
10 The Delphi Magazine Issue 68

Distributed Application
Development With SOAP
by Craig Murphy

The days of the passive internet
are over. Today’s internet

must be active, responsive, effi-
cient and, very importantly, cur-
rent. Clients, users, customers and
subscribers are not interested in
viewing content that is out-of-date
or is the same from one day to the
next. We can go some way towards
a more active internet with tech-
nologies such as CGI binaries, ASP
pages, Perl and Interactive HTML
(iHTML). However, most of these
solutions are bound to particular
operating systems, thus introduc-
ing additional complexity and
machine-specific interaction. Ulti-
mately, they can reduce your share
of the market.

Would it not be useful if we could
work with a language-neutral,
operating system-agnostic, mecha-
nism for bringing life to our
internet applications? The Simple
Object Access Protocol (SOAP)
offers us just that: the ability to
build distributed applications that
add the element of interactivity
that we would normally associate
with a desktop application.

Over the course of this article I
will describe and position SOAP as
a mechanism and architecture for
building distributed applications
that bring together disparate,
possibly even legacy, applications.
Whilst an understanding of SOAP
is enough to start building
applications, it is important to real-
ise the benefits of the various
toolkits that we can use to build
our SOAP applications. This article
will demonstrate how we can use
the Microsoft SOAP Toolkit 2.0
(Beta 1) to build internet-ready
applications using Delphi.

Throughout this article, the term
‘Microsoft SOAP Toolkit’ relates to
the Microsoft SOAP Toolkit 2.0
(Beta 1). The 2.0 Toolkit differs
significantly from the 1.0 Toolkit:
Microsoft even recommends

gradually upgrading applications
based on SOAP Toolkit 1.0 to use
the new SOAP Toolkit 2.0. Rather
than present complete coverage of
the SOAP specification and the
SOAP Toolkit, this article will con-
centrate on a high-level overview. I
will cover the basics of SOAP and
demonstrate how we can use the
Microsoft SOAP Toolkit in Delphi.

Normally that would suffice for
an article; however, I will also dis-
cuss the ‘discovery’ languages and
initiatives, UDDI and WSDL, as both
of these acronyms play an impor-
tant role in any discussion of SOAP
and web services. Whilst a com-
plete explanation of WSDL and
UDDI is outside the scope of one
article, I hope that the explanation I
provide will whet your appetite
and that you will follow the links in
the Resources sidebar at the end.

What Is SOAP?
SOAP is a ‘structured means of
transporting data and method calls
between potentially distributed
systems’. It is a text-based proto-
col, thus it does not impose any
platform dependencies. Platform
independence is promoted further
by the use of eXtensible Markup
Language (XML) as the messaging
format.

SOAP messages that originate
from a client application (a Delphi
executable or a web page) are
known as SOAP requests. SOAP
requests are received by a server
(known as a SOAP listener), where
they are processed. After the
server has processed the request,
a SOAP response is returned to the

client. At each stage of the ‘trans-
action’, the SOAP messages are
encoded using XML, thus the
message can freely pass through
firewalls (which has always been a
problem for the likes of DCOM
and CORBA). Figure 1 graphically
represents this sequence of
events.

The server-side process that
‘actions’ a SOAP request is known
as a SOAP endpoint. The SOAP end-
point ultimately ‘knows’ how to
execute the method specified in
the SOAP request. The SOAP end-
point may execute the method by
instantiating a DLL on the same
machine, or it may pass the SOAP
request on to another endpoint
(possibly on another server).

Whilst it is not compulsory,
SOAP uses HyperText Transfer
Protocol (HTTP) as a means of
client-server communication. It is
possible, however, to use email
(SMTP), file transfer protocol
(FTP), or even message queuing
systems (such as MSMQ) as the
transport mechanism. HTTP was
chosen because there is an
implementation of it on nearly
every possible platform. Thus,
with a little effort, a small Psion
handheld organiser (for example)
can create and consume SOAP
messages. This was one of the key
design issues behind SOAP: ‘invent
no new technology’. SOAP relies
on open specifications and
protocols: XML and HTTP are tried
and tested and they have no
vendor lock-in.

Internet

SOAP Requests

SOAP Responses Server

(SOAP Listener)

Client

Application

➤ Figure 1: SOAP Architecture.

April 2001 The Delphi Magazine 11

SOAP Message Structure
A SOAP message comprises three
XML elements. The first is a com-
pulsory root element called Enve-
lope. The second element is a child
of the Envelope element, it is an
optional Header element. The third
element, also a child of Envelope, is
a compulsory Body element.

The Envelope element is required
in order to comply with the XML
specification: an XML file must
have a ‘root’ element or node that
encompasses all child elements or
nodes. The Header element can be
used to carry extra information
that is pertinent to the Body ele-
ment. For example, we might
include a ‘user name’ in the Header
element; it does not affect the
meaning of a SOAP message, but it
could be used to charge the user
based on their usage of a specific
method (similar to the Application
Service Provider model).

Listing 1 presents a sample SOAP
request. The SOAP request con-
tains line numbers; here is an
explanation of each line:

1. The opening <SOAP-ENV:
Envelope> element. It will hold the
rest of the SOAP message. The
prefix SOAP-ENV is an XML name-
space. Namespaces are required to
ensure that clashes between ele-
ment names don’t occur.

2. This is the opening
<SOAP-ENV:Body> element. Again, it
is part of the SOAP message, so it
must be prefixed with the SOAP-ENV
namespace.

3. This is the opening ele-
ment for <m:getCustAddress>.
Inside the Body element is the mes-
sage content. This can be anything
you like, as long as it is valid XML.
In this case I have defined a new
namespace called m. The
namespace itself is a Universal
Resource Identifier (a URI). The
URI doesn’t have to be resolvable
either: it can be unreachable!

4. This is the <CustNo>
element; it contains the customer
number 1221.

5. This is the closing element
for <m:getCustAddress>.

6. This is the closing element
for <SOAP-ENV:Body>.

7. This is the closing element
for <SOAP-ENV:Envelope>.

If the SOAP request (Listing 1) was
sent to a server (one that
implements the getCustAddress
method), then the SOAP response
might resemble Listing 2. Again, I
have added line numbers to the
SOAP response. Let’s go through
each one:

1. This is exactly the same as
the SOAP request.

2. This is exactly the same as
the SOAP request.

3. This is the same as the
SOAP request, except this time,
because we’re dealing with a
response, the word Response is
tagged onto the element name.

4. Lines 4 to 11 form part of
the returned message.

12. The closing element for
<m:getCustAddressResponse>.

13. This is exactly the same as
the SOAP request.

14. This is exactly the same as
the SOAP request.

Web Services
Attend any technical IT conference
this year (or last year for that
matter) and you will hear the
phrase ‘web services’. The internet
application community are using a
‘web service’ to mean a server-side
method that can be executed from
a possibly remote client applica-
tion using little more than a web
browser. This is exactly what SOAP
is about: the execution or invoca-
tion of web services. I use the word
‘possibly’ to mean that you may
wish to implement SOAP-based
applications on your corporate

intranet; it is a great way of
bringing together data from more
than one system, or for the amal-
gamation of data from legacy
databases.

However, how do we know that a
particular URL offers web ser-
vices? There is a lot of work being
carried out around the notion of
‘discovery’; that is, the discovery
of web services. In essence, we
need a mechanism that allows
client applications the opportu-
nity to find out what web services
are available from a given website.
The Web Service Description Lan-
guage (WSDL) goes some way
towards a solution for the problem
of discovery. WSDL is yet another
internet acronym that we have to
contend with.

What Is WSDL?
WSDL, like SOAP, is encoded using
XML, therefore it too can be con-
sidered platform-neutral. WSDL
provides a means of describing the
web services a particular ‘object’
has to offer. I use the word ‘object’
loosely: how the web services are
implemented is up to the
server-side developer. As client-
side ‘users’ or consumers of the
service, all we are interested in is
the interface to the web service.

WSDL is almost analogous to
Interface Definition Language
(IDL). Like IDL, WSDL allows us to
specify data types. If you scan the
WSDL in Listing 4 you’ll see refer-
ences to ‘double’, and you’ll notice
the reference to CalcITEC.xsd.

1:<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope">
2:<SOAP-ENV:Body>
3:<m:getCustAddress xmlns:m="http://www.itecuk.com/dbdemos/customer">
4:<CustNo>1221</CustNo>
5:</m:getCustAddress>
6:</SOAP-ENV:Body>
7:</SOAP-ENV:Envelope>

1:<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope">
2:<SOAP-ENV:Body>
3:<m:getCustAddressResponse xmlns:m="http://www.itecuk.com/dbdemos/customer">
4:<CustNo>1221</custno>
5:<Company>Kauai Dive Shoppe</Company>
6:<Addr1>4-976 Sugarloaf Hwy</Addr1>
7:<Addr2>Suite 103</Addr2>
8:<City>Kapee Kauai</City>
9:<State>HI</State>
10:<Zip>94766-1234</Zip>
11:<Country>US</Country>
12:</m:getCustAddressResponse>
13:</SOAP-ENV:Body>
14:</SOAP-ENV:Envelope>

➤ Above: Listing 1 ➤ Below: Listing 2

12 The Delphi Magazine Issue 68

WSDL uses XML Schema (Part 2) to
specify data types. Unfortunately,
an explanation of XML Schema is
outside the scope of this article;
however, if you are interested,
there is a URL in the Resources
sidebar. In a nutshell, WSDL pro-
vides us (or a SOAP toolkit) with
enough information to construct a
SOAP request and decipher the
SOAP response.

Typically, a client application
requests a WSDL document that
describes the web services on
offer. Already we can see it is not a
perfect solution, as the client still
has to have some knowledge: it
must know the URL and the name
of the WSDL file that describes the
web services on offer. It is not
uncommon for one web server to
have more than one WSDL
document!

The Microsoft SOAP Toolkit can
create WSDL from DLLs and/or
type libraries. Thus, as developers,
we do not have to create WSDL
documents by hand: that would be
a daunting task!

However, Microsoft has intro-
duced yet another layer of abstrac-
tion into the web services
equation: WSML, Web Service
Meta Language. Like WSDL, WSML
is encoded using XML. WSML is
used in conjunction with WSDL
and provides a mechanism for
describing the server-side imple-
mentation of the web services. As
you might imagine, a WSML docu-
ment identifies the PROGID of the
DLL that provides the web
services. The same process that
creates WSDL from a DLL also
creates WSML.

I must stress that WSML is
unique to the Microsoft SOAP
Toolkit and, given that it is a
server-side extension, it does not
change the client-side operation at
all. Essentially, the WSML docu-
ment provides a means of mapping
the high-level web service on to a
concrete implementation of the
method required to satisfy the
request.

Building Web Services
With Delphi (Server-Side)
We can use Delphi to build
server-side web services: Listing 3
presents the code required to
implement a simple calculator. The
iTec calculator offers four web ser-
vices: Add, Subtract, Divide (with
divide by zero protection) and
Multiply. Each method takes two
parameters of type double and
returns an answer, also of type
double. The iTec calculator is
implemented as a DLL: you will
need to create an ActiveX Library

and then an OLE Automation
object to build your own DLLs. You
will also need to register the DLL:
this can be achieved using the
Register ActiveX Server option on
to the Run menu.

Microsoft has provided a
standalone tool that creates WSDL
and WSML from a DLL: it is called
wsdlgen.exe. As long as the DLL is
registered, this executable allows
us to build WSDL and WSML based
on the information we provide:
➢ The location of a DLL that

implements the web services
(calc.dll).

➢ The SOAP listener URL (this will
be used in the WSDL file).

➢ The directory where the WSDL
and WSML should be created.

Figure 2 depicts the WSDL genera-
tor in action: I use localhost
because I am running both the
client and the server on the same

unit ITECCalc;
interface
uses
ComObj, ActiveX, ITEC_TLB, StdVcl;

type
TCalc = class(TAutoObject, ICalc)
protected
function Add(A,B: Double): Double; safecall;
function Divide(A, B: Double): Double; safecall;
function Multiply(A, B: Double): Double; safecall;
function Subtract(A, B: Double): Double; safecall;
{ Protected declarations }

end;
implementation
uses ComServ;
function TCalc.Add(A,B: Double): Double;
begin
Add := A + B;

end;

function TCalc.Divide(A, B: Double): Double;
begin
if (A <> 0) AND (B <> 0) then
Divide := A / B

else
Divide := 0;

end;
function TCalc.Multiply(A, B: Double): Double;
begin
Multiply := A * B;

end;
function TCalc.Subtract(A, B: Double): Double;
begin
Subtract:= A - B;

end;
initialization
TAutoObjectFactory.Create(ComServer, TCalc, Class_Calc,
ciMultiInstance, tmApartment);

end.

➤ Listing 3

➤ Figure 2:
wsdlgen.exe in action.

14 The Delphi Magazine Issue 68

<definitions name ='CalcITEC' targetNamespace =
'http://localhost/itec/CalcITEC.wsdl'
xmlns:tns='http://localhost/itec/CalcITEC.wsdl'
xmlns:xsd1='http://localhost/itec/CalcITEC.xsd'
xmlns:soap='http://schemas.xmlsoap.org/wsdl/soap/'
xmlns='http://schemas.xmlsoap.org/wsdl/'>

<types>
<schema targetNamespace=
'http://localhost/itec/CalcITEC.xsd'
xmlns='http://www.w3.org/1999/XMLSchema'>

</schema>
</types>
<message name='Add'>
<part name='A' type='double'/>
<part name='B' type='double'/>

</message>
<message name='AddResponse'>
<part name='Result' type='double'/>

</message>
<message name='Subtract'>
<part name='A' type='double'/>
<part name='B' type='double'/>

</message>
<message name='SubtractResponse'>
<part name='Result' type='double'/>

</message>
<message name='Multiply'>
<part name='A' type='double'/>
<part name='B' type='double'/>

</message>
<message name='MultiplyResponse'>
<part name='Result' type='double'/>

</message>
<message name='Divide'>
<part name='A' type='double'/>
<part name='B' type='double'/>

</message>
<message name='DivideResponse'>
<part name='Result' type='double'/>

</message>
<portType name='CalcITECPortType'>
<operation name='Add' parameterOrder='AddInput1
AddInput2'>
<input message='tns:Add' />
<output message='tns:AddResponse' />

</operation>
<operation name='Subtract'
parameterOrder='SubtractInput1 SubtractInput2'>
<input message='tns:Subtract' />
<output message='tns:SubtractResponse' />

</operation>
<operation name='Multiply'
parameterOrder='MultiplyInput1 MultiplyInput2'>
<input message='tns:Multiply' />
<output message='tns:MultiplyResponse' />

</operation>
<operation name='Divide' parameterOrder='DivideInput1
DivideInput2'>
<input message='tns:Divide' />
<output message='tns:DivideResponse' />

</operation>
</portType>
<binding name='CalcITECBinding'
type='tns:CalcITECPortType' >
<soap:binding style='document'
transport='http://schemas.xmlsoap.org/soap/http' />

<operation name='Add' >
<soap:operation
soapAction='http://localhost/itec/CalcITEC.asp' />

<input>

<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</input>
<output>
<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</output>
</operation>
<operation name='Subtract' >
<soap:operation soapAction=
'http://localhost/itec/CalcITEC.asp' />

<input>
<soap:body use='encoded' namespace=
'http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</input>
<output>
<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</output>
</operation>
<operation name='Multiply' >
<soap:operation
soapAction='http://localhost/itec/CalcITEC.asp' />

<input>
<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</input>
<output>
<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</output>
</operation>
<operation name='Divide' >
<soap:operation
soapAction='http://localhost/itec/CalcITEC.asp' />

<input>
<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</input>
<output>
<soap:body use='encoded'
namespace='http://localhost/itec/CalcITEC.xsd'
encodingStyle='http://schemas.xmlsoap.org/soap/
encoding/' />

</output>
</operation>

</binding>
<service name='CalcITEC' >
<port name='CalcITECPortType'
binding='tns:CalcITECBinding' >
<soap:address
location='http://localhost/itec/CalcITEC.asp' />

</port>
</service>

</definitions>

➤ Listing 4

machine. If you are fortunate
enough to have a development
server available, then you may
change localhost to suit your envi-
ronment. Assuming that we have
run the iTec calculator through
wsdlgen.exe, Listing 4 presents the
WSDL required for the iTec calcula-
tor object; Listing 5 presents the
WSML.

The Microsoft SOAP Toolkit pro-
vides us with server-side objects
that will help us process our SOAP
requests and responses. The
MSSOAP.SoapServer object allows
us to pass it WSDL and WSML

documents that describe the meth-
ods a SOAP request might contain.
Thus, because we are server-side,
we know that the traditional ASP
Request and Response objects are
available for us to use. SOAP over
HTTP uses the ASP Request object
to carry the SOAP request (as
XML), and therefore the SOAP
Toolkit allows us to pass the ASP
Request object as a parameter to
the Invoke method of the
SoapServer object. Similarly, the
ASP Response object can also be
passed in to the Invoke method.
Thus, we can assume that the
Invoke method performs the
following:

➢ Decodes the SOAP request (via
the ASP Request object) and
identifies the method to be
invoked.

➢ Creates an instance of the ob-
ject that implements the
method (from the WSML and
the DLL).

➢ Invokes the method using the
parameters supplied in the
SOAP request.

➢ Constructs the correct SOAP
response and creates the
correct ASP Response object in
return.

I have chosen to implement the ‘lis-
tener’ using an Active Server Page:
the language is VBScript. However,

April 2001 The Delphi Magazine 15

you can see that the same VBScript
would suffice for any generic SOAP
listener, so as Delphi developers
we can use these few lines of
VBScript to provide a conduit to
our DLL-based web services. List-
ing 6 presents the few lines of
VBScript required to invoke the
SOAP Server object.

Using Web Services
In Delphi (Client-Side)
Testing our web services requires
us to build a client-side applica-
tion. Figure 3 presents the main
form of an application that allows
us to test our web services.

The Microsoft SOAP Toolkit
provides us with client-side
support in the form of the
MSSOAP.SOAPClient object. We must
instantiate the SOAPClient object
using late binding; after all we are
going to be dynamically calling
methods which are as yet unknown
at runtime.

The SOAPClient object allows us
to load a WSDL document (one that
describes the calculator web
services) using the mssoapinit
method:

ovSOAPClient.mssoapinit(
‘http://localhost/itec/
CalcITEC.wsdl’, ‘CalcITEC’,
‘CalcITECPortType’);

Once CalcITEC.wsdl is loaded, the
SOAPClient locates the CalcITEC
service element, as shown in List-
ing 7. The service element pro-
vides information relating to the

SOAP endpoint:
CalcITEC.asp; this
means the SOAPClient
knows where to send
SOAP requests.
CalcITEC.asp is the
server-side process
that is able to service
SOAP requests for the
iTec calculator.

<servicemapping name='CalcITEC'>
<service name='CalcITEC'>
<using PROGID='ITEC.Calc' cachable='0'
ID='CalcITECObject' />

<port name='CalcITECPortType'>
<operation name='Add'>
<execute uses='CalcITECObject' method='Add'
dispID='1'>
<parameter callIndex='1' name='A' elementName='A' />
<parameter callIndex='2' name='B' elementName='B' />
<parameter callIndex='-1' name='retval'
elementName='Result' />

</execute>
</operation>
<operation name='Subtract'>
<execute uses='CalcITECObject' method='Subtract'
dispID='6'>
<parameter callIndex='1' name='A' elementName='A' />
<parameter callIndex='2' name='B' elementName='B' />
<parameter callIndex='-1' name='retval'
elementName='Result' />

</execute>

</operation>
<operation name='Multiply'>
<execute uses='CalcITECObject' method='Multiply'
dispID='5'>
<parameter callIndex='1' name='A' elementName='A' />
<parameter callIndex='2' name='B' elementName='B' />
<parameter callIndex='-1' name='retval'
elementName='Result' />

</execute>
</operation>
<operation name='Divide'>
<execute uses='CalcITECObject' method='Divide'
dispID='4'>
<parameter callIndex='1' name='A' elementName='A' />
<parameter callIndex='2' name='B' elementName='B' />
<parameter callIndex='-1' name='retval'
elementName='Result' />

</execute>
</operation>

</port>
</service>

</servicemapping>

➤ Listing 5

The last parameter, CalcITEC-
PortType, is used to obtain the
specification for each possible
method. Listing 8 provides the
specification for the Add method.
The specification for a method
includes information about what a
SOAP request needs to provide in

<%
Dim SoapServer
Dim WSDLFilePath
Dim WSMLFilePath

On Error Resume Next
Response.ContentType = "text/xml"

Set SoapServer = Server.CreateObject("MSSOAP.SoapServer")

WSDLFilePath = Server.MapPath("CalcITEC.wsdl")
WSMLFilePath = Server.MapPath("CalcITEC.wsml")
SoapServer.Init WSDLFilePath, WSMLFilePath

SoapServer.SoapInvoke Request, Response
%>

➤ Above: Listing 6 ➤ Below: Listing 7

➤ Figure 3: Web service test
application; it all adds up.

<service name='CalcITEC' >
<port name='CalcITECPortType' binding='tns:CalcITECBinding' >
<soap:address location='http://localhost/itec/CalcITEC.asp' />

</port>
</service>

<portType name='CalcITECPortType'>
<operation name='Add' parameterOrder='AddInput1 AddInput2'>
<input message='tns:Add' />
<output message='tns:AddResponse' />

</operation>
</portType>

<message name='Add'>
<part name='A' type='double'/>
<part name='B' type='double'/>

</message>

➤ Listing 8

➤ Listing 9

<message name='AddResponse'>
<part name='Result'

type='double'/>
</message>

➤ Listing 10

16 The Delphi Magazine Issue 68

order to execute the method. List-
ing 9 presents the information
required to build a SOAP request
for the Add method. Once a SOAP
request for the Add method has
been executed, the SOAPClient can
expect a SOAP response formatted
using the information provided by
Listing 10.

The complete end-to-end pro-
cess is best described graphically:
Figure 4 depicts the client and
server-side activity required to
process a SOAP request.

1. The client application
instantiates MSSOAP.SOAPClient.

2. The SOAPClient is initial-
ised with the WSDL for the iTec
calculator.

3. Client-side method invoca-
tion causes the SOAPClient to gen-
erate a SOAP request that is sent to
CalcITEC.asp.

4. CalcITEC.asp is listening
for SOAP requests: when one is
received, it instantiates MSSOAP.
SOAPServer and loads the iTec cal-
culator WSDL and WSML.

5. CalcITEC.asp then asks the
SOAPServer to execute the method
specified in the ASP Requestobject.

6. Under the hood, SOAPSer-
ver instantiates ITEC.Calc and
executes the required method.

7. The response from
ITEC.Calc is returned to the
SOAPServer.

8. A SOAP response is cre-
ated and returned to the
SOAPClient.

9. The SOAPClient ‘deciphers’
the response and passes it to the
client.

Whilst this may seem like an
awful lot of work, we have actually
done very little. In fact, we have
written very little SOAP-specific
code ourselves; most of our devel-
opment time has been spent build-
ing a DLL to solve a problem, and
building a test application for that
DLL. This is the beauty of SOAP:

good toolkits and libraries can
shield us from the complexities of
XML parsing, HTTP and SOAP
message construction.

As an interesting aside, the
SOAPServer object actually uses
XPath expressions to address the
WSDL and WSML documents (I
introduced XPath expressions in
The Delphi Magazine, Issue 66: the
article is called Using XML And
XSLT In Delphi).

Listing 11 provides the full
source for the iTec calculator. We
must use the ComObj unit if late
binding is to be achieved,
CreateOleObject is implemented in
that unit. So, the late bound meth-
ods (those bound at runtime),
really should have good error
checking. For example, what if the
Add method doesn’t exist? What if I
call the Add method with two
strings? SOAP provides a means of
‘error’ handling: SOAP faults. A
SOAP fault is simply a SOAP mes-
sage (encoded using XML) that
includes information about any
errors that may have occurred.
Syntax errors, like type mismatch,
are reported using SOAP faults.

Why Use A SOAP Toolkit?
Implementing a SOAP-based appli-
cation using raw XML packets

Installing The iTec Calculator
I have used Windows 2000 Server and Internet Information Services
(IIS) to build and test the iTec calculator example. The Microsoft SOAP
Toolkit 2.0 beta 1 client-side objects run on Microsoft Windows 98,
Microsoft Windows ME, Microsoft Windows NT 4.0 Service Pack 6, and
Microsoft Windows 2000 Service Pack 1. The server-side objects run on
Active Server Pages (ASP) pages on Windows 2000 and Windows NT
4.0 Service Pack 6. Unfortunately Internet Explorer 5.0 or higher is
required: MSXML 3.0 forms part of the SOAP Toolkit 2.0 installation
process.

The example code that accompanies this article requires careful
installation: both client and server must have the SOAP Toolkit 2.0
installed.

Server-side:
1. You will need to create a virtual directory called itec in your IIS
wwwroot directory.
2. Copy ITECCalc.wsdl, ITECCalc.wsml and ITECCalc.asp into the itec
directory.
3. Compile and register Calc.dll.

The client-side installation is much easier: simply compile and run
ITECSOAP.dpr.

ITEC.Calc
Add()
Subtract()
Multiply()
Divide()

ITECSOAP.exe

WSDL
service (CalcITEC)
port (CalcITECPortType)
message Add
message AddResponse
operation Add

…

WSML
execute (ITEC.Calc)
service (CalcITEC)
port (CalcITECPortType)
operation Add
operation Subtract
operation Multiply
operation Divide

CalcITEC.asp

client-side server-side

MSSOAP. SOAPServer

Method
Invokation

MSSOAP. SOAPClient

�

�

�

�

�

�

�

SOAP
Response

�

�

SOAP
Request

➤ Figure 4: Client and server-side
activity to process a SOAP
request.

18 The Delphi Magazine Issue 68

between client application and
server listeners is perfectly possi-
ble; however, the creation and
deciphering of SOAP requests and
responses is an overhead. Both
client and server need to know how
to work with HTTP, XML and SOAP,
and that is before the application
gets to see any of the method calls
and data. Thus the toolkit provides
the abstraction we need: as devel-
opers we are able to concentrate
on the application in hand, and we
do not have to worry about the cre-
ation of SOAP requests and the
deciphering of SOAP responses.

A Few Words About UDDI
Whilst WSDL works, clients still
have to interrogate server-side
WSDL files in order to determine
the web services a website may
offer. In our example, the client
application knew http://localhost/
itec/CalcITEC.wsdl existed, and it
knew what methods to use. With
more and more web services being
developed, it is clear than we will
need some means of indexing the
services, and a mechanism that
allows ‘blind’ clients to ‘discover’
the services offered by a particular
website. Universal, Description,
Discovery and Integration (UDDI)

takes things to the next stage. UDDI
is an internet-based registry of web
services that uses SOAP for the reg-
istration of web services, and
SOAP for the subsequent discov-
ery (or lookup). Like SOAP, UDDI is
a collaborative project involving
Microsoft, IBM and Ariba.

UDDI revolves around the idea of
a collection of Business Registries,
organised just like a telephone
book: White Pages provide a list of
web services, Yellow Pages are
organised by business sector,
Green Pages include ‘program-
matic’ descriptions, thus discov-
ery of services can be automated.

UDDI also entails a Service Type
Registration which provides a
detailed description of a web
service.

Summary
Over the course of this article I
have tried to provide an insight
into the world of web services. As
you have probably gathered, there
is a lot to learn. SOAP, XML and
HTTP for starters! By using SOAP
toolkits, we can alleviate some of
the burden we face: the toolkits
provide a layer of abstraction to
the underlying protocols. The
abstractions provided can also

protect us from change. SOAP,
XML and HTTP are versioned spec-
ifications (SOAP is at version 1.1).
Should the underlying specifica-
tion change, the toolkits should
absorb many of the changes
required, thus changes to our own
client-side code should be
minimal.

The toolkits also allow us, as
developers, to concentrate on
solving the problem in hand. If we
had to develop the code that
would be required to construct
SOAP messages, send SOAP
messages, and invoke the
methods, we would find ourselves
spending a lot of time writing code
that is peripheral to the problem
we are trying to solve. We do have
to endure a slight shift in our
approach: rather than write
lengthy multi-purpose functions,
we should try and make our func-
tions as granular as possible. That
is, make each routine perform just
one specific task. In doing so, we
are hopefully opening the door to
global code re-use. Given that one
client-side SOAP request can
spawn more than one server-side
SOAP request, the notion of using

unit CalcTest;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls;

type
TForm1 = class(TForm)
btnAdd: TButton;
btnDivide: TButton;
btnMultiply: TButton;
btnSubtract: TButton;
edtA: TEdit;
edtB: TEdit;
edtAnswer: TEdit;
Label1: TLabel;
Label2: TLabel;
Label3: TLabel;
Label4: TLabel;
procedure btnAddClick(Sender: TObject);
procedure btnDivideClick(Sender: TObject);
procedure btnSubtractClick(Sender: TObject);
procedure btnMultiplyClick(Sender: TObject);

private
public
end;

var Form1: TForm1;
implementation
{$R *.DFM}
uses
ComObj;

procedure TForm1.btnAddClick(Sender: TObject);
var ovSOAPClient : Olevariant;
a,b, answer : double;

begin
ovSOAPClient := CreateOleObject('MSSOAP.SoapClient');
ovSOAPClient.mssoapinit(
'http://localhost/itec/CalcITEC.wsdl', 'CalcITEC',
'CalcITECPortType');

a := StrToFloat(edtA.Text);
b := StrToFloat(edtB.Text);
answer := ovSOAPClient.Add (a,b);
edtAnswer.Text := FloatToStr(answer);

end;
procedure TForm1.btnDivideClick(Sender: TObject);
var ovSOAPClient : Olevariant;
a,b, answer : double;

begin
ovSOAPClient := CreateOleObject('MSSOAP.SoapClient');
ovSOAPClient.mssoapinit(
'http://localhost/itec/CalcITEC.wsdl', 'CalcITEC',
'CalcITECPortType');

a := StrToFloat(edtA.Text);
b := StrToFloat(edtB.Text);
answer := ovSOAPClient.Divide (a,b);
edtAnswer.Text := FloatToStr(answer);

end;
procedure TForm1.btnSubtractClick(Sender: TObject);
var ovSOAPClient : Olevariant;
a,b, answer : double;

begin
ovSOAPClient := CreateOleObject('MSSOAP.SoapClient');
ovSOAPClient.mssoapinit(
'http://localhost/itec/CalcITEC.wsdl', 'CalcITEC',
'CalcITECPortType');
a := StrToFloat(edtA.Text);
b := StrToFloat(edtB.Text);
answer := ovSOAPClient.Subtract (a,b);
edtAnswer.Text := FloatToStr(answer);

end;
procedure TForm1.btnMultiplyClick(Sender: TObject);
var ovSOAPClient : Olevariant;
a,b, answer : double;

begin
ovSOAPClient := CreateOleObject('MSSOAP.SoapClient');
ovSOAPClient.mssoapinit(
'http://localhost/itec/CalcITEC.wsdl',
'CalcITEC', 'CalcITECPortType');

a := StrToFloat(edtA.Text);
b := StrToFloat(edtB.Text);
answer := ovSOAPClient.Multiply (a,b);
edtAnswer.Text := FloatToStr(answer);

end;
end.

➤ Listing 11

April 2001 The Delphi Magazine 19

Resources
Useful URLs
The Microosft SOAP Toolkit 2.0 beta 2 is now available at http://msdn.
microsoft.com/code/sample.asp?url=/msdn-files/027/001/580/
msdncompositedoc.xml

The previous SOAP Toolkit is at http://msdn.microsoft.com/
downloads/default.asp?URL=/code/sample.asp?url=/MSDN-FILES/
027/001/529/msdncompositedoc.xml

Promoters of SOAP: www.lucin.com, www.iona.com
UDDI: www.uddi.org
The SOAP Specification: http://msdn.microsoft.com/xml/
general/soaptemplate.asp

The Microsoft XML Developer Center:
http://msdn.microsoft.com/ xml/

The .NET framework: http://msdn.microsoft.com/net/
The BizTalk website: www.biztalk.org
XML Schema Part 2: Data Types: www.w3.org/TR/xmlschema-2/

Useful Reading
XML and SOAP Programming with BizTalk Servers,
Brian E. Travis, Microsoft Press, ISBN 0-7356-1126-2.

Understanding SOAP, Kennard Scribber & Mark C.Stiver,
Sams, ISBN 0-672-31922-5.

SOAP for aggregation promotes
the granular theory even more.

An understanding of SOAP puts
you in good stead for the not too
distant future. The recent release
of Microsoft .NET takes SOAP a

stage further: SOAP is omnipresent
in .NET, therefore choosing to
ignore it may prove costly. Simi-
larly, Microsoft uses SOAP as the
underlying message transport pro-
tocol in its BizTalk Server 2000

product. BizTalk Server processes
BizTalk documents: these are XML
documents that adhere to the
BizTalk Document and Messaging
Specification (the BizTalk Frame-
work). BizTalk is a key player in the
B2B and e-commerce arena: it pro-
vides a mechanism that allows the
exchange of documents between
trading partners. Whilst BizTalk
itself is a Microsoft product, the
BizTalk Framework is an open
specification, therefore you are
able to avoid vendor lock-in.

Finally, if you are using Internet
Explorer 5 or higher and wish to
see a simpler SOAP example, point
your browser here:

www.craigmurphy.com/SOAP/
SimpleSOAPClient.htm

Craig Murphy works as an Enter-
prise Developer for Currie &
Brown (www.currieb.com); their
primary business is quantity sur-
veying, cost management and
project management. Email Craig
at Craig.Murphy@currieb.co.uk
or Craig@isleofjura.demon.co.uk

	What Is SOAP?
	SOAP Message Structure
	Web Services
	What Is WSDL?
	Building Web Services With Delphi (Server-Side)
	Using Web Services In Delphi (Client-Side)
	Installing The iTec Calculator
	Why Use A SOAP Toolkit?
	A Few Words About UDDI
	Summary
	Resources

